Product Description

G5 series diaphragm compressor feature:
Small diaphragm compressors:
Structure: Z,L, P.D type
Lubrication: Splash
Oil type: complusory oil supplement
cooling way: water cooled or air cooled
maintenance maximum weight per piece: 1000kg
maintenance maximum space: the circle shall be not less than 1.5 m    

  Model Flow rate Inlet pressure Outlet pressure Water waste speed of crankshaft  Motor Power Size Machine weight
    Nm³/h MPa(G) MPa(G) L/h r/min kW L*W*H mm t
1 GD5-150/200 150 normal pressure 20 7000 430 90 4400*2850*2200 13
2 GD5-525/6-200 525 0.6 20 12000 400 132 3800*2700*2000 10.8
3 GD5-250/0.3-12 250 0.03 1.2 4700 375 55 4200*2900*1800 14
4 GD5-2900/45-120 2900 4.5 12 13200 429 160 4000*2900*2450 16
5 GD5-9000/78-83 9000 7.8 8.3 3700 450 45 3800*2600*2500 15
6 GD5-1300/45-220 1300 4.5 22 13500 429 160 4000*2900*2450 16
7 GD5-8000/235-250 8000 23.5 25 3800 429 45 3800*2600*2500 15
8 GD5-500/0.8-10 500 0.08 1 6800 429 75 4400*2850*2200 16
9 GD5-500/10-200 500 1 20 12000 400 132 3700*2750*2000 10
10 GD5-550/17-200 550 1.7 20 9500 400 110 3700*2750*2000 10
11 GD5-1080/5-31.5 1080 0.5 3.15 12000 429 132 4400*2850*2200 14
12 GD5-500/0.7-23 500 0.07 2.3 9500 429 110 4400*2850*2200 14
13 GD5-600/15-350 600 1.5 35 12800 429 160 4000*2850*2100 12
14 GD5-4500/185-190 4500 18.5 19 5000 420 45 3800*2600*2500 15
15 GD5-1000/15-180 1000 1.5 18 15000 420 160 4000*2850*2100 12
16 GD5-500/5-50 500 0.5 5 8000 400 90 4000*2600*2100 12
17 GD5-1000/20-180 1000 2 18 12000 420 160 4000*2850*2100 13
18 GD5-800/18-210 800 1.8 21 12000 420 132 4000*2850*2100 13

General information of structure

   Diaphragm compressor mainly consists of crankcase, connecting rod, cross-head, piston, cylinder body, cooler and its pipeline, base plate, instrumentation, electric motor etc. The compressor structure is divided into 4 types—L, Z, V and D, according to cylinder body arrangement. 
L type diaphragm compressor’s vertical and horizontal cylinders form L. (Please refer to the picture)
Z type diaphragm compressor only consists of vertical cylinders, and this structure looks like the letter “Z”. (Please refer to the picture)
V type diaphragm compressor’s left and right cylinders form V. (Please refer to the picture)
D type diaphragm compressor is the balanced opposed frame, the cylinder body number can be 2, 3 or 4. (Please refer to the picture. This is the 4 cylinders type)

Main technical data

All the cylinders comprise upper plate, diaphragms, and cylinder body etc. The diaphragms are clamped between the cylinder cover and cylinder body. The cylinder cover and cylinder body each has a concave recess hollowed out in their contacting faces. The gas cylinder is formed between cylinder cover concave recess and diaphragms. Both suction valve and discharge valve are fitted on the upper plate. Among of them, the discharge valve is located on the center of the upper plate. The evenly located small oil holes are on the cylinder body to deliver the oil pressure inside the oil cylinder to the diaphragms. 

Pressure Regulating Valve 
The oil pressure of oil cylinder is regulated by the tension of the valve spring.In case the oil pressure is higher than the regulated value, turn the regulating bolt counter-clockwise to loosen the spring tension, but turn the regulating bolt clockwise to tighten the spring, when the oil pressure is lower than the regulated value. When the oil pressure meets the required value, the regulating bolt must be locked with a lock-nut. The oil pressure of the oil cylinder shall always be higher than the discharge pressure by 15~20%. But the oil and gas differential pressure shall not be lower than 0.3MPa or higher than 1.5MPa. 

The cooler structure is the double-wall pipe type. The circular space between the outer and inner pipe is the cooling water passage and the inner pipe is the gas passage. Normally the water inlet port is at the lower side and the water outlet port is at the upper side. The flow direction of cooling water and gas is on the contrary.

Oil Pressure Measuring Device 
The measuring device of oil cylinder discharge pressure consists of shock-proof pressure gauge, check valve and unloading valve. The case of the pressure gauge is totally airproof and filled with damping liquid. The inner devices of gauge is immersed in the liquid, which makes the pressure gauge hands stable through the function of the viscosity of damping liquid. The unloading valve is fitted under the gauge to discharge the remained air in the oil pipeline   and to unload the oil pressure gauge. Also the check valve connecting with oil cylinder through pipeline is fitted under the unloading valve.   

Oil pipes 
Oil pipes consist of lube oil pipe and oil pressure secure system.
The lubrication for the driving device adopts gear oil pump circulation pressure lubricating. The lube oil stored in the frame oil tank enters into the gear oil pump after being filtered and is pressed into the oil holes in the crankshaft through the gear oil pump to lubricate the crankshaft friction surface. At the same time, part of the lube oil reaches the crosshead pin and crosshead along the oil holes in the connecting rod to lubricate the friction surface. The oil pressure of gear oil pump shall be kept between 0.3~0.5Mpa, and the bearings at the 2 ends of crankshaft is splash lubricated. 
Oil pressure secure system consists of oil compensating pipe, pressure-measuring pipe and oil return pipe. The oil output from the oil compensating pump will supplement oil for compressor cylinders through the oil compensating pipe and the excess oil returns to the crankcase through the pressure-regulating valve.

Gas pipes
The gas enters into compressor through inlet port to be compressed and enters into the clients’ system after cooling by the cooler. 


How to Choose the Right Air Compressor

An air compressor uses pressurized air to power a variety of tools. They are most commonly used to power nailers and impact wrenches. Other popular uses for air compressors include paint sprayers and impact wrenches. While all air compressors have the same basic construction, their specialty differs. Ultimately, their differences come down to the amount of air they can push. Read on for information on each type of air compressor. These tools are great for many different purposes, and choosing the right air compressor depends on your specific needs.

Electric motor

While purchasing an electric motor for air compressor, compatibility is a key factor. Not all motors work with the same type of air compressor, so it’s important to check the manufacturer’s instructions before purchasing. By doing this, you can avoid wasting money on an incompatible motor. Another important consideration is speed. A motor’s speed is its rate of rotation, measured in revolutions per minute. It is critical that you purchase a motor with sufficient speed to meet the needs of your air compressor.
Typically, an electric motor for air compressor is 1.5 hp. It is ideal for use with medical equipment and metal-cutting machines. It also performs well under continuous operation and offers a high efficiency and energy-saving performance. Moreover, it features an attractive price, making it a good choice for a wide range of applications. If you are looking for a motor for an air compressor, look no further than a ZYS series.
A motor’s protection class indicates how the motor will operate. Protection classes are specified by the IEC 60034-5. These are stated with 2 digits and represent the protection against solid objects and water. For example, an IP23 rating means that the motor will be protected from solid objects, while IP54 means that it will protect from dust and water sprayed from all directions. It is vital to choose a motor with the correct protection class for your air compressor.
When choosing an electric motor, you should consider whether it’s compatible with the brand of air compressor. Some may be compatible, while others may require advanced electronics skills to repair. However, most air compressors are covered by warranty, so it’s important to check with the manufacturer if the warranty is still in effect before you spend a dime on a replacement. The motor should be replaced if it has failed to perform as designed.

Oil bath

Air compressors require proper lubrication to function efficiently. The piston must draw air with minimal friction. Depending on their design, air compressors can either be oil-lubricated or oil-free. The former uses oil to reduce piston friction, while the latter splashes it on the cylinder bearings and walls. Such air compressors are commonly known as oil-flooded air compressors. In order to keep their oil baths clean, they are recommended for use in locations with high dust levels.

Start/stop control

An air compressor can be controlled by a start/stop control. This type of control sends a signal to the main motor that activates the compressor when the demand for air falls below a preset limit. This control strategy is effective for smaller air compressors and can be useful for reducing energy costs. Start/stop control is most effective in applications where air pressure does not change frequently and where the compressor is not required to run continuously.
To troubleshoot this problem, you need to check the power supply of your compressor. To check the supply side, use a voltage monitor to determine if power is flowing to the compressor. Ensure that the power supply to the compressor is steady and stable at all times. If it fluctuates, the compressor may not start or stop as expected. If you cannot find the problem with the air compressor power supply, it may be time to replace it.
In addition to the start/stop control, you may want to purchase additional air receivers for your air compressor. These can increase the capacity of air stored and reduce the number of times it starts and stops. Another way to decrease the number of starts per hour is to add more air receivers. Then, you can adjust the control to match your requirements. You can also install a pressure gauge that monitors the compressor’s performance.
Start/stop control for air compressors can be complex, but the basic components are relatively easy to understand. One way to test them is to turn the compressor on or off. It is usually located on the exterior of the motor. If you’re unsure of the location of these components, check the capacitors and make sure that the air compressor is not running while you’re not using it. If it does, try to remove the capacitor.
Variable displacement control is another way to adjust the amount of air flowing into the compressor. By controlling the amount of air, the control can delay the use of additional compressors until more required air is available. In addition to this, the device can also monitor the energy used in the compressor. This control method can result in substantial energy savings. You can even save on the amount of electricity by using variable displacement control. It is essential for efficient compressed air systems.

Variable speed drive

A VFD, or variable frequency drive, is a type of electric motor that adjusts its speed to match the demand for air. It is an efficient way to reduce energy costs and improve system reliability. In fact, studies have shown that a 20% reduction in motor speed can save up to 50% of energy. In addition, a VFD can monitor additional variables such as compressor oil pressure and motor temperature. By eliminating manual checks, a VFD will improve the performance of the application and reduce operating costs.
In addition to reducing energy costs, variable-speed drives also increase productivity. A variable-speed air compressor reduces the risk of system leaks by 30 percent. It also reduces the risk of system leaks by reducing pressure in the system. Because of these advantages, many governments are promoting this technology in their industries. Many even offer incentives to help companies upgrade to variable-speed drives. Therefore, the variable-speed drive can benefit many air compressor installations.
One major benefit of a variable-speed drive is its ability to optimize energy use. Variable frequency drives are able to ramp up and down to match the demand for air. The goal is to optimize the pressure and flow in the system so that the best “dead band” occurs between 40 percent and 80 percent of full load. A variable-speed compressor will also increase energy efficiency because of its programmability.
A variable-speed air compressor can also be used to control the amount of air that is compressed by the system. This feature adjusts the frequency of power supplied to the motor based on the demand. If the demand for air is low, the frequency of the motor will reduce to save energy. On the other hand, if there is an excess demand for air, the variable-speed compressor will increase its speed. In addition, this type of air compressor is more efficient than its fixed-speed counterpart.
A VFD has many benefits for compressed air systems. First, it helps stabilize the pressure in the pipe network, thereby reducing the power losses due to upstream pressure. It also helps reduce the power consumption caused by fluctuations in upward pressure. Its benefits are also far-reaching. And as long as the air pressure and air supply is properly sized, a VFD will help optimize the efficiency of compressed air systems.

China Liquid Gas CO2 Carbon Dioxide Oxygen Methane Gas Diaphragm Compressor  China Liquid Gas CO2 Carbon Dioxide Oxygen Methane Gas Diaphragm Compressor